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Abstract
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The performance of a Mach 6 viscous optimized waverider was calculated
using the three-dimensional Navier-Stokes equations. The Mach 6 viscous opti-
mized waverider was generated using MAXWARP, a waverider generating code
developed at the University of Maryland. The numerical calculations were done
using CFL3D, an implicit upwind-biased finite volume algorithm developed at
NASA-Langley. The results were used for several purposes: validation of the
existing waverider generation code, calculation of the on- and off-design per-
formance of a waverider, and assessment of the validity of the use of waverider
geometry as a forebody for an engine/airframe integrated design. Good agree-
ment was found between the calculated performance by MAXWARP and re-
sults from the Mach 6 Navier-Stokes calculation. Off-design performance of the
Mach 6 optimized waverider were calculated for Mach numbers of 4 and 8. The
performance at these Mach numbers compared well with the performance of
the viscous optimized waveriders specifically designed for these Mach numbers.
Contours of different flow parameters in the cross flow plane were examined for
the three calculations. The results indicate that the flow gradients are relatively
small within the captured flow, and the variation itself is well behaved; thus,
making the waverider configuration a promising choice for an engine/airframe

design, especially for a cruise type application.



Acknowledgments

I would like to thank my advisor, Mark J. Lewis, for his enthusiasm and
support which made this workposmblc - |
Also, I would like to acknowledge the following people for their contributions
to this thesis: Dave Miller at the NASA Langley Research Center for providing
CFL3D; Sherry Krist and James Thomas at the NASA Langley Research Center
for their answers to my questions regarding the code; Jim Randolph and JPL
for providing the Cray time which was absolutely necessary for the completion
of this work; and the members of the hypersonic group at the University of

Maryland, Mary Kae O’Neill in particular, for their moral and technical support.

Lastly, I would like to thank my parents for making it all possible.



Table of Contents

List of Tables
List of Figures
List of Symbols

1 Introduction

1.1 Concept of Waveriders . . ... ... ... ... .o
1.2 GQGeneration of Waveriders . . . . .. .. ...
1.3 Optimization of Waveriders . . .. ... ... ...
1.4 Present Work . . . . . e

2 MAXWARP

3 Governing Equations
3.1 Nondimensionalization of the Governing Equations . . .. .. ..
3.2 Transformation of the Governing Equations . . ............

3.3 Thin-Layer Navier-Stokes Equations . .. .. .............

4 Numerical Algorithm

4.1 Spatial Discretization . . ... ...
4.1.1 Godunov Method . . ... .. .. .. ... .
4.1.2 Roe’s Flux Difference Sphitting. . . .. ... ..o

4.2 Time Integration . . .. .. .. e
4.3 Turbulence Model . . . .. . ...

vi

o0 =~ A W

10

13
14
14
16



5 Grid Generation

5.1 Elliptic Grid Generation . . . ... ............. . ......

52 GridSpacing .. ......... ... .. ... ..

53 Grid Adaptation . . . ... ... ...
6 Results -

6.1 Configuration . . ..... ... .. ... .. ..., ... ...,

6.2 Solution Methodology ... .......... .. .. ..........

6.3 Euler Calculation

6.4 Navier-Stokes Calculations . ... ... ... ..... ... . ... ..

7 Conclusions and Recommendations

7.1 Conclusions . ...

Appendicies

A Leading Edge Coordinates

Bibliography

v

29
29
35
36

42

42
43
44
45

82
82
83

84

84

87



List of Tables

6.1 Inviscid force coefficients and 1./D for Mach 6 calculation. . ... 45

6.2 Force coefficients and L/D for Mach 6 calculation.. .. ... .... 46

6.3 The inviscid, viscous, and the total force coefficients for Mach 6
calculation. . . .. e 46

6.4 Force coefficients and 1./D at on and off-design conditions. . . .. 51

A.1 Leading edge coordinates for Mach 6 viscous optimized waverider 85
A.2 Leading edge coordinates for Mach 6 viscous optimized waverider

(continued) . ... ... .. ... 86



List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

5.1
5.2
5.3

5.4

6.1
6.2
6.3

6.4

6.5

6.6

Engine/Airframe Integrated Vehicle.. . . . .. ... ... .. ...
Caret wing. . . ............ e
Conical waverider. . . . .. ...
General shock waverider2. . . . .. ... .. ... ... ... .....

Mach Number vs. L/D of Various Configurations!s.. . . . .. ...
Waverider Generation. . . . . . ... . ... ... .. ... ...

Elliptic grid generation. . . . ... ....... .. ... ... .....
Three-dimensional grid for Mach 6 waverider.. . . . . .. ... ...

Details of the leading edge for the inviscid grid and the viscous

Non-adaptive grid and adaptive grid for Mach 6 inviscid calculation.

Rounding the leadingedge. . . . .. ... ... ... . ... ... ...
Mach 6 viscous optimized waverider.. . . . .. ... ... ... ...
Comparison of MAXWARP results and CFL3D Euler results for
Mach 6 calculation: Pressure contour at exit flow plane. . . . . ..
Comparison of MAXWARP results and CFL3D Euler results for
Mach 6 calculation: Surface pressure distribution at exit flow
plane and the outline of the cross-section. . . ... ... ..... . .
Surface pressure variation in the streamwise direction from CFL3D

results for Mach 6 calculation . .. ... .. ... ... ... .. ...
Comparison of MAXWARDP results and CFL3D results for Mach

6 calculation: Pressure contour at cross-section located at 60 %

of thechord. . ... ... . . . . . . . . ...

vi

= < = T A Y = A ]

12

34
39

40
41

43
51

52

53

54

55



6.7

6.8

6.9

6.10

6.13

6.14

6.15

6.16

Comparison of MAXWARP Results and CFL3D Results for Mach
6 calculation: Pressure contour at exit flow plane. . . .. ... . ..
Comparison of MAXWARP results and CFL3D results for Mach
6 calculation: Surface pressure distribution at cross-section lo-
cated at 60 % of the chord and the outline of the cross-section. .
Comparison of MAXWARP results and CFL3D results for Mach
6 calculation: Surface pressure distribution at the exit flow plane
and the outline of the cross-section. . . . ... ... . ... ... ...
Comparison of MAXWARDP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Pressure contour at cross-section
located at 60 % of the chord. . . . . .. .. .. ... ... ...
Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Pressure contour at exit flow plane.
Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Surface pressure distribution at
cross-section located at 60 % of the chord and the outline of the
Cross-seclion. . . . . ... .. ...
Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Surface pressure distribution at the
exit flow plane and the outline of the cross-section. . . . .. .. ..
Comparison of MAXWARP for Mach 6 results and CFL3D re-
sults for Mach 4 calculation: Pressure contour at cross-section
located at 60 % of the chord. . 0000000000000
Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: Pressure contour at exit flow plane.
Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calenlation: Surlace pressure distribution at
cross-section located at 60 % of the chord and the outline of the

CrOSS-SCCLION. . . . . . .

vil

57

60

62

64



6.17 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: Surface pressure distribution at the
exit flow plane and the outline of the cross-section. . ... ... ..

6.18 Comparison of MAXWARP results and CFL3D results for Mach
6 calculation: Maiss flux contour at cross-sectiori located at 60 %
of the chord and fhe outline of the cross-section. . .. .. ... ...

6.19 Comparison of MAXWARP results and CFL3D results for Mach
6 cé.]culation: Mass flux contour at the exit flow plane and the
outline of the cross-section. . . . .. ... ... e

6.20 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Mass flux contour at cross-section
located at 60 % of the chord and the outline of the cross-section.

6.21 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Mass flux contour at the exit flow
plane and the outline of the cross-section. .. ............ .

6.22 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: Mass flux contour at cross-section
located at 60 % of the chord and the outline of the cross-section.

6.23 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: Mass flux contour at the exit flow
plane and the outline of the cross-section. ... ....... .....

6.24 Comparison of MAXWARP results and CFL3D results for Mach
6 calculation: Side wash angle contour at cross-section located at
60 % of the chord and the outline of the cross-section. . . .. ...

6.25 Comparison of MAXWARP results and CFL3D results for Mach
6 calculation: Side wash angle contour at the exit flow plane and
the outline of the cross-section. . . ... ... .. ... ... . .....

6.26 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Side wash angle contour at cross-
section located at 60 % of the chord and the outline of the cross-

SectlON. . . . . . .

viii

66

69

70

71

72

74



6.27 Comparison of MAXWARDP results for Mach 6 and CFL3D re-
sults for Mach 8 calculation: Side wash angle contour at the exit
flow plane and the outline of the cross-section. . .. ... ... ...

6.28 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: Side wash angle contour at cross-
section located at 60 % of the chord and the outline of the cross-
SECLIOTI. . . . . . o o e

6.29 Comparison of MAXWARP results for Mach 6 and CFL3D re-
sults for Mach 4 calculation: side wash angle at the exit flow
plane and the outline of the cross-section. . ... ...........

6.30 Inviscid and viscous force contribution to the total lift coefficient.

76

78
79

6.31 Inviscid and viscous force contribution to the total drag coefficient. 80

6.32 Comparison between the L/D values calculated by CFL3D for
the Mach 6 viscous optimized waverider and the L/D values pre-
dicted by MAXWARP for the Mach 4, 6, and 8 viscous optimized

WaVETIAErS. . . . . o o e e e e e e e e e e

X



List of Symbols

a = speed of sound

c = Sutherland’s constant

cp = specific heat at constant pressure
e = total energy per unit volume

p - = pressure

q = velocity magnitude

4=, 4y, 4. = heat transfer in x,y,z direction

r = leading edge radius

t = time

u,v,w = velocity components

z,y,z = cartesian coordinates in physical domain

A, B,C = Jacobian of the inviscid flux vectors

C, = Jacobian of the viscous flux vector
Cp = drag coeflicient

CL = lift coeflicient

F,G,H = inviscid flux vectors

H, = viscous flux vectors

J = Jacobian of the transformation

L = reference length

L/D = lift over drag

M = Mach number

Pr = Prandtl number

Q = conserved variables




Re = Reynolds nui.ber
T = pressure

U,V,W = contravariant velocity components

¥ = specilic heal ratio

A = bulk viscocity coeflicient

7 = molecular viscocity coefficient,

v = kinematic viscocity coeflicient

p = density

T = shear stress

£,1.¢ = body-fitted coordinates in computational domain

8¢, 8y, 6, = partial differential operator in €,,¢ direction
Subscripts

i,j,k = grid indicies

L,R = left and right state of the Riemann problem

r,y,z = partial derivative with respect to x,y,z
£&.1.¢ = partial derivative with respect to €,9,¢
00 = freestream condition

Superscripts

n = time step indicy

R = exact solution to the Riemann problem
* = dimensional quantity

= variable in computational domain
= numerical flux

- = Roe averaged value

X1






Chapter 1

Introduction

The initiation of various programs in different countries to develop aerospace
planes to secure independent access to space and to efficiently place payloads
in orbit, has revitalized interest in hypersonic vehicles. In the United States,
the initiation of the National Aerospace Plane (NASP) program has renewed
research efforts in the development of an air-breathing hypersonic vehicle for
various applications. These applications are not only space applications but
commercial applications such as long-distance passenger or cargo transport, as
well as military applications, such as reconnaissance, strategic airlift, interdic-
tion, surveillance, and strategic bombing. However, many technological as well
as system related obstacles have to be overcome before the first successful flight.
Based on preliminary research, the NASP program defined several critical tech-
nologies which were deemed essential for the design of such a vehicle! . These
include the scramjet engine, advanced material, and design of a fully integrated
engine and airframe.

" As the flight Mach number increases, the relative size of the propulsive system
of the vehicle to the airframe becomes large?. Thus, to minimize losses, the
propulsive system must be an integral part of the airframe. One such design
would have the entire underside of the vehicle become the propulsive system.
In this design, the forebody, from the nose to the engine entrance, serves as
an engine inlet by precompressing the flow going into the combustor, and the

aftbody, from the combustor to the tail of the vehicle, acts as an engine nozzle



by expanding the flow exiting from the combustor as shown in Figure 1.1. Thus,
for an engine/airframe integrated vehicle, the shape of the forebody can have
significant impact on the performance of the hypersonic vehicle. The shape of
the forebody must be such that it can precompress the flow sufficiently so that
combustion can take place while maintaining flow uniformity. Furthermore, for

cruise type applications, the shape should provide high L/D (lift-over-drag).

/—

! 1

Forebody Shock

F———— Forebody =l= Combustor —+— Aftbody ——o‘
( Inlet ) | ( Nozzle )

Figure 1.1: Engine/Airframe Integrated Vehicle.

One of the most promising configurations to meet these requirements is an
old idea known as the hypersonic waverider. The advantages of the waverider
configuration over other configurations are that waveriders generate high L/D
and produce a flow field which has no cross flow on the under surface of the
body when flown at the design condition. However, the concept, which was first
introduced in 1959 by Nonweiller?, has generally been overlooked as a shape for
a hypersonic lifting vehicle because the predicted performance of early designs
did not match the wind tunnel test results. This was due to the fact that early

waveriders were created using inviscid solutions and viscous forces were either



never taken into account or added after the design was determined. Thus, when
waveriders were tested in the wind tunnels, they either did not reproduce the
predicted performance or achieved poor performance in general.

These problems were resolved with the formulation of viscous optimized wa-
veriders®. These conically derived waveriders were unique because skin friction
was taken into account in the design process. The end result was a new class
of waveriders which exhibited L/D values previously thought unobtainable by a
hypersonic vehicle. Since the introduction of the first viscous optimized designs,
both subsonic and hypersonic wind tunnel tests have been conducted to assess
the viability of various waverider-based configurations for an actual hypersonic
vehicles 6. The initial results from the hypersonic test have indicated that these

configurations do perform as well as predicted by the design code.

1.1 Concept of Waveriders

A waverider is a type of supersonic/hypersonic vehicle which, when flying
at the design Mach number, has the entire bow shock on the underside of the
vehicle emanating from the leading edge of the body. As a result, there is
no flow spillage from the lower surface to the upper surface and the vehicle
appears to be riding on top of an attached shock wave; hence, the name “wa-
verider.” Two unique features separate the waverider configuration from other
supersonic/hypersonic vehicle configurations. First, at the design Mach number,
high pressure flow produced by the bow shock is contained beneath the lower
surface. This containment of high pressure results in a vehicle with higher lift.
In general for a given lift coeflicient, waveriders have higher lift-over-drag than
other vehicle shapes. Second, not only is the high pressure flow fully contained,
but the contained flow has no cross flow, and the inviscid thermodynamic prop-
erties are known everywhere in the region. Thus, the waverider configuration is

ideally suited for an engine integrated airframe.



1.2 Generation of Waveriders

To generate a waverider, two properties must be first defined: a generating
flowfield and either a leading edge curve or a trailing edge curve of a waverider.
Given a knowngenera;tmg flowfield and a leading édge curve, the lower surface
of a waverider is constructed by trraci”ng the streamsurface from the bow shock
downstream to a desired location. Similarly, starting from the trailing edge, the
lower surface is formed by tracing the streamlines forward until they intersect
the bow shock”. Although Bowcutt et al. used an expansion surface to increase
the vehicle’s L/D, the upper surface is ordinarily constructed by tracing the
freestream surface from the leading edge.

When Nonweiller first introduced the concept of waveriders, better known
then as “caret wings” because of their resultant cross-sectional shape, he used
a planar oblique shock wave as a generating flowfield as shown in Figure 1.2.

Since then different flowfields including three-dimensional flows have been
used to generate waverider shapes. Work was done during the 1960’s in Britain,
using supersonic flow past cones, to generate a class of “conical-flow” waveriders
as shown in Figure 1.3. Later, Rasmussen et al.® 9, Cole and Zien!?, and Kim et
al.1" derived waveriders from circular and elliptic cones, and axisymmetric flow
using small disturbance theory. Most recently, Sobieczky et al.12 constructed
waveriders from given shock wave geometries using the method of characteristics

as shown in Figure 1.4



Wedge Defining Flowfield
Freestream Flow

Leading Edge Curve on Shock Planar Shock

Figure 1.2: Caret wing.

Flowtield Generating Body

Freestream Flow
—

Bow Shock
Leading Edge Curve on Shock

Figure 1.3: Conical waverider.



Figure 1.4: General shock waverider!2,



1.3 Optimization of Waveriders

Due to the inverse nature of the method by which waveriders are generated,
i.e., the flowfield produced by the waverider at the design condition is known
a priori, the waverider lends itself well to various optimization processes. This
advantage was first pursued by Rasmussen et al.® 9, Cole and Zien!°, and Kim
et al.!'. These authors used small disturbance theory to calculate the surface
pressure distribution on a generated vehicle and optimize the shape using the
calculus of variations. The concept of “optimized waveriders” was enhanced
further by the series of work done at the University of Maryland where the
waverider shapes were generated computationally, and the viscous effects were
included in the optimization process. The first such work was done by Bowcutt
et al.* who solved the integral boundary layer equation along the streamline
to calculate the skin friction. The configuration of the vehicle was then opti-
mized for lift-over-drag (L/D) by the simplex method of Nelder and Mead 3.
These waveriders, which were optimized with viscous effects, gave birth to a
new class of waveriders coined as “viscous optimized waveriders.” The viscous
optimized waveriders were unique because they were the first realistic hyper-
sonic configuration to break the “L/D barrier” proposed by Kuchemann !4 as
shown in Figure 1.5.

The work on viscous optimized waveriders was continued at the University
of Maryland by Corda et al.'> who used power-law bodies for the generating
flowfield in search of a better generating flowfield. Later, McLaughlin ¢ used
chemically reacting cone-flow for the gcncrdt.ing flowfield. Recently, Vanmol 17
optimized the shape for L/D while using the aerodynamic heating as one of
the constraint functions, and Chang'® included viscous interaction effects when
calculating the aerodynamic forces. Currently, O’Neill et al.” are optimizing

waverider shapes for scramjet engine integration.
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Figure 1.5: Mach Number vs. L/D of Various Configurations!5.

1.4 Present Work

Although the test results confirm the validity of the waverider concept, many
more questions must be answered before the waverider geometry is considered
as a practical shape for a hypersonic lifting body. These questions include
the off-design performance and the effects of leading edge roundness. Since
waveriders are point design vehicles, i.c., the the vehicle shape is formed for a
given design condition, the performance of the vehicle at on-design conditions
is well understood; however, little is known about the off-design performance
of viscous optimized waveriders. Furthermore, to maintain an acceptable level
of aerodynamic heating, the leading edge of an actual vehicle must be rounded.
But the effects of the rounding of the leading edge on the loss of flow containment
and subsequent loss of performance is not known. This work is motivated by
our interest in the answers to these questions.

In this work the on-design and ofl-design performance of a Mach 6 viscous

optimized waverider are calculated by solving the three-dimensional Navier-



Stokes equations for Mach numbers of 4, 6, and 8. The optimized shape was
modified by rounding the leading edge to a radius of 1 cm to study the effect
of leading edge roundness. Note that the leading edge radius is small compared
to the overall vehicle length of 60m. The results from the Mach 6 calculation
are used to validate the existing waverider generation code: MAXWARP. Also,
contours of various flow parameters are examined at different cross flow planes
to determine the effectiveness of the waverider shape as a forebody design. This
work represents the first Navier-Stokes computations of a viscous optimized

waverider at off-design Mach numbers.



Chapter 2 = |

MAXWARP

The waverider configuration used for the present study was generated using
MAXWARP (Maryland Axisymmetric Waverider Program) computer code 5.
MAXWARP is a waverider design code which outputs an optimized waverider
geometry generated from either a conical or power-law body flowfield. As men-
tioned in the previous chapter, the lower surface of the waverider is constructed
by tracing the leading edge curve along the bow shock downstream, and the up-
per surface is defined by the freestream surface as shown for a conical waverider
in Figure 2.1.

The surface pressure for the waverider is calculated from the Taylor-Maccoll
equation if conical flow is used as a generating flowfield, or from the solutions
obtained by solving the Euler equations via a space marching method if the
power-law body flowfield 1s used as a generating flow field. The base pressure
of the vehicle is taken to be the freestream pressure value. The skin friction
is calculated using the reference temperature method. This method allows ap-
proximation for both laminar and turbulent boundary layer. The code allows
for fully turbulent flow, fully laminar, and a combination of the two. For the
mixed flow, the boundary transition is predicted using a correlation obtained
from experimental data.

The shape of the waverider is optimized, either for maximum L/D for a

cruise vehicle, or minimum drag for an accelerator, by varying the shape of

10
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the leading edge curve. The optimization process uses the simplex method of
Nelder and Mead 3, and several geometric constraints are imposed for internal
volume considerations. Note that the waverider generated by MAXWARP is
only optimized for a given generating flowfield; hence, to obtain a true optimum
shape for given freestream conditions and wall temperature, a comparison must

be made between results for several different generating flowfields.
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Figure 2.1: Waverider Generation.
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Chapter 3

Governing Equations

The computations for the present study were done using CFL3D 20. 21 pro-
vided by NASA Langley Research Center. The governing equations for mo-
tion of fluids solved by this code are based on the unsteady, three-dimensional
Navier-Stokes equations. Written in a strong conservation form, they are

1. Continuity:

dp*  Op*u*  Ip"vt  Opwt
at* dz* oy z*

=0 (3.1)

2. X-momentum:

Ap*u*  p*u +p* Jptutv® dp*utw* 87 or: ar:
4 + 4 F + (4 + /4 - Ty Xz

= =i 3.2
(’-)t- (91“ ayo (?Z‘ 6z.t + ay- 62,. ( )
3. Y-momentum:
‘) .. . 4. _ 8 f) ., 0’ » 8 .. (‘)T‘ 67—‘ 67-1
(f) v ()/)‘ u'v + ap v' +p + ()p'v w07y + T 9Ty (3.3)
ae ar* oy ozt Ox* oy* dz*
4. Z-momenturmn:
-, - ') LI D LI T ') P - - 61"2 -
dp*w dp*utw + 8pv"w 4 +P arz, 4 9 o, (3.4)

ot + oz* Ay* 0z 0z Gy oz

5. Energy:

(‘).‘ (‘) ‘_n L] - a t+ . 'U‘ a 8‘ + L wt
de” | e ‘+p)u+(e P') +( pw _
o dr* oy* 0z*

+ Oz* oy az*

13
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3.1 Nondimensionalization of the Governing Equations

To obtain dynamic similarity and energetic similarity from geometrically
similar situations and to improve the efficiency of the numerical algorithm,
the dimensional variables in Equations 3.1-3.5 are nondimensionalized. Among

many choices available, the following nondimensional variables are used in CFL3D:

I = I— = i z = _z_ —_ u — v — w
= YT T T YTae, "Ta YTa
p. p. e‘
= =—— e=— 3.6
P e T ed R 39
The nondimensional shear stresses, in indicial notation, are then given by
_ M Oui | Ou; Ou;
5 = Rew |F (ax, t 6::.-) + 352, b (3.7)
Similarly, nondimensional heat transfer is given by
o Moot Oa?
=== [ReooPr('y - 1)] Oz; (3.8)

The molecular viscosity in Equations 3.7 and 3.8 is calculated using the Suther-
land’s Law,

o 1+ C/To'o
w= T T, (3.9)

where ¢ is the Sutherland’s constant, ¢ = 198.6° R = 110.4 K and Stokes’ hypothesis

A= -2 is used for bulk viscosity. The nondimensional parameters are

Prandtl number :  Pr= ik—ﬁl =0.72 (3.10)
Freestream Reynolds number : Reo, = —%‘q—;ﬁz (3.11)
Freestream Mach number: M, = %91 (3.12)

3.2 Transformation of the Governing Equations

The accuracy and the efficiency of the numerical scheme can be greatly
enhanced by transforming the curvilinear physical space into rectangular com-
putational space. For the present study, the unsteady three-dimensional Navier-

Stokes equations are transformed from the (z,y,z) Cartesian coordinate system

14



to a (¢,n,¢) body-fitted coordinate system, where the ¢-direction is in the stream-
wise direction, the n-directioﬁ is in the circumferential direction in the cross-
flow plane, and the ¢-direction is in the normal direction from the body. The
transformation allows for the simplification of the boundary conditions, and the
reduction of overall grid points by clustering the grid in regions where the flow
variables experience high gradients and distributing them sparsely in regions of
low gradients. The transformation of the equations from Cartesian coordinates

to generalized coordinates was done using the following relations,

E=¢(z,y,2) (3.13)
n=n1n(z,y,z2) (3.14)
¢=¢(z,y,2) (3.15)

Then using the chain-rule, the transformation metrics can be defined as

& = J(ymac — yg2n) (3.16)
n: = J(yc2e — yex) (3.17)
€= = J(yezq — ynze) (3.18)
€y = J(zc2zg = Ty2) (3.19)
Ny = J(rezp — T(2¢) (3.20)
Cy = J(zpze — xc2p) {3.21)
& = J(zoyg — 2¢wm) (3.22)
n: = Jxeye — zeyc) (3.23)
Co = J(xeyy — Toue) (3.24)

where J is the Jacobian of the steady transformation between the Cartesian

coordinates (z,y,z) and the generalized coordinates (¢,7,¢) given by

_ 0.0
T Nz, y,2)

|
= (3.25)
Telynze ~ Yo 2n) = yelxTyzg = I(:n) + z¢(zpy; — z(y,,)




3.3 Thin-Layer Navier-Stokes Equations

Since the dominant viscous effects at high Reynolds number arise from vis-
cous diffusion normal to the body and the flowfield is expected to have minimal
separation, the thin-layer approximation is employed. The thin-layer approx-
imation neglects all the viscous stresses in the direction parallel to the body
surface, which are the ¢ and 5 directions; furthermore, any mixed derivatives
are neglected. Then the governing equation used in the present study written
in vector form is given by

8Q OF oG aA-H,) _

5ttt o 3 (3.26)

where, @ represents the conserved variables,

r -

p

pu
1

=7 e (3.27)

pw

-

F, G, and H represent the inviscid fluxes,

Pl
PUu+&:p
F=- pUv +&p (328)
pUw +E.p

(e +p)U

3%
pVu+n.p
pVv +yp (3.29)
pVw +1,p

(e+p)V

G=

-
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1244
pWu + (op
H=| pWu+¢, (3.30)
pWw+(.p

(e+p)W

U,V, and W are the contravariant velocity components, which represent velocity
components perpendicular to constant planes of ¢, n, and ¢, respectively, and

are defined as

U=§&u+Ev+E€w (3.31)
V=nu+npv+nw (3.32)
W=(u+t v+ Cw . (3.33)

The pressure is related to the flow variables by the equation of state for an ideal
gas,
2

SN as

and ¢2 is the sum of the squares of the velocities,
q2 = u2 + 1)2 + ‘w2 (335)

The viscous flux H, is given by

- -

0
d1u¢ + (P2
H, = = $1v¢ + Cyd2 (3.36)
$rw¢ + (02

| 4[5+ i), + W |

where

b=+ +¢ (3.37)

_ G+ Cy;’c +Cwe) (3.38)

2
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Chapter 4

Numerical Algorithm

CFL3D uses a semi-discrete finite volume method to solve for the governing
equations. The steady state solution is obtained using a 3-factor implicit time
advancement algorithm. The inviscid flux vectors are upwind differenced using
Roe’s flux-difference-splitting scheme?? and the viscous flux vector is centrally

differenced. The algorithm is second-order accurate in space.

4.1 Spatial Discretization

The semi-discrete finite volume form of the governing equation is given by
(%%)i.j.k + ([:'i+§.j.l- - F.‘-;,j,k)

+ (én,)+a}.k - é.’,j—;,k) + ( (f’ - ,il')i+-},j,k - (i{ - ﬁu)i—i,j,k) =0 (4.1)
where the spatial derivatives are written conservatively as a flux balance across
each cell and for convenience the cell size is taken to be unity. In Equation 4.1,
subscript (i,},k) roﬁrrs to the cell-center location (¢;,1;,¢x), and, for example in
the ¢-direction, i + 3 corresponds to the cell interface location (&4, n;,Ce)- The
inviscid interface fluxes in equation 4.1, F, G, and H are determined by the use of

Roe’s flux differencing splitting technique which incorporates Roe’s approximate
gsp g | P PP

Riemann problem solver. The viscous flux H, is centrally differenced.

4.1.1 Godunov Method

Roe’s flux difference splitting method is based on a method originally de-

veloped by Godunov®. In the Godunov method, the conserved variables are
S
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considered piecewise constant within each mesh cell at a given time level, and
evolution of the flow to the next time step is based upon the exact solution
to the local Riemann problem defined by the conditions across each cell inter-
face. The new constant values for each cell are taken to be the average value of
the conserved variable across the cell, thus making this method a finite volume
method. The exact relationship for the averaged state is obtained by integrat-
ing the conservation equation. For example, integrating the one-dimensional
conservation law equation,

0Q  OF _
S+ 7 =0 (4.2)

over the domain r to z + Az gives

d z+Ar .
o Q(z,l)dz = F(z,t) - F(z + Az, t) (4.3)
If the equation is further integrated in time, from t =nAt to t = (n+1) At, the

exact relation is given by,

r+Ar 4 Az
/ Q"+ (z, t)dz / Q"(z,0)dz = - A[f(Q(z + A) - S(Q(z))]  (4.4)

where f is the time averaged inviscid flux between t =n At and t = (n+ 1)A. If

we define the average state variable across the cell z to z + Az as

1 [t

Q=

5 )y Q(z,t)dz (4.5)

i ' AI 1 2 j % '

The equation 7(‘,(']171atcs the variation of the cell-averaged conserved variables
across time level At resulting from the balance of the time-averaged fluxes at
the cell interfaces. It is interesting to note that the conservation equation 4.6 -
has the same form as the general three-point explicit difference scheme in the

conservation form,
' ! Azx t+3 bR '

Hence, the numerical flux of the scheme is considered to be the approximation

to the tim('-avcfaged physical flux and the mesh point value is the cell-averaged
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value. In Godunov’s method the numerical flux or the time-averaged flux is
obtained from the exact solution to the Riemann problem across each cell in-
terface. Consider Q®(z/t,QL,Qr) as the exact solution to the Riemann problem

defined by the initial conditions,
Q=Q. <0 (4.8)
Q=Qr >0 (4.9)
along a ray x/t. The approximation of the time-averaged flux across cell bound-

aries or the numerical fluxes, f‘(Q,H) ,F‘(Q,-_Q, for the Godunov scheme can be

calculated from the exact solution to the Riemann problem at each cell bound-

ary, i.e.,
F(Qi_p) = FIQ™(0,Qi-1, Q) (4.10)
F(Qiyy) = F(Q™(0,Q:, Qis1)) (4.11)
Substituting the above equations into the general conservation equation gives

Q' = @ ~ RL(FIQ™(0,0 Qo) = FQR(0,Qimr, Q1) (412)

4.1.2 Roe’s Flux Difference Splitting

In Roe’s Flux Difference Splitting Method the numerical flux is the inter-
face flux calculated from the approximate Riemann problem solver of Roe’s.
The incorporation of an approximate Riemann problem solver is based on the
idea that, since the original Godunov scheme relates only an approximation of
the exact solution, one might be satisfied with approximate solutions to the
Riemann problem if the non-linear behavior of the solution is retained. Roe
suggests approximate solutions which are exact solutions to an approximate

problem given by
Q+AQ, =0 (4.13)

The matrix A is a constant Jacobian matrix constructed from some average
state Q which is based on the left and right states, Q. and Qa. Roe required

that the matrix must satisfy the following properties:
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(1) F(Qr) - F(QL) = A(Qr, QL) (@r - QL)

(2) If @ = Q1 = Qr then, A(QL,Qr) = A(Q) = 8F/8Q.

(3) The eigenvectors of A(Q.,Qr) are linearly independent.
(4) It constitutes a linear mapping {from the vector Space Q

to the vector space F

The average states that satisfy these properties are given by

_urL 4+ Dup
-t TR 4.14
“=T1¥D (4.14)
_ Hp 4+ DHg
= — 4.1
H 1+ D (4.15)
al= (v - 1)[H - -;-flzl (4.16)

where

D=, /" (4.17)
Pr

Hence the averaged Jacobian matrix A becomes

0 1 0
A=| —@-r)? @2-x)i® & (4.18)
(5 - H)u H—xi® (14x)@

where x = (y — 1) for perfect gas. The interface flux, i.e., the numerical flux for

the scheme, is calculated using

Fiyy = %[F(QR) + F(QL) - RIAIR(Qr - Q)i+ (4.19)

3
where R and k™' are the right-eigenvector matrix of A and its inverse, respec-

tively, and |A| is the diagonal matrix consisting of the absolute values of the

eigenvalues of matrix 4, i.c.,

fu—af 0
|A] = 0 4| 0 (4.20)
0 0 Jja+al
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The dissipation term contribution to the interface flux in a three-dimensional

generalized curvilinear coordinate system in the ¢ direction is given by

|ANQr - QL) 1Al AQ

( ay :
uas + kzas + ag
= vag + kvar, + az (421)

way + kzas + ag

Hay + tias + @ag + vay + wag — (fraca’y — a,

where
Vel A
o = |5 (a0 Z) (4.22)
Vel o
@ = ol |u + c[(Ap + pa A u) (4.23)
I |VE] A
@G = 5= T£||u—c](Ap+paAu) (4.24)
a4 = ay+az+ay (425)
as = a(az — ay) (4.26)
ag = ¥ il(p D u—kep i) (4.27)
a; = —3—6 [il(p O v~ kyp A i) (4.28)
ag = ? lal(p D w—k.pAa) (4.29)

The - superscript denotes the Roe averaged states given by

P = pL PR (4.30)

) u, +uph
_ 4.31
“ 14D (4.31)

, vy +vrD
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i+D (433)

a il LIJ;};)"D (4.34)
2 -2 2

al = (7-1)[f1—(“ +"2+w) (4.35)

where D is given by equation 4.17. !z}l is the magnitude of the directed area of

the cell interface in the ¢ direction and

(ks ky ks) = _.(le» é_yf-l&) (4.36)

are the associated direction cosines. The contravariant velocity normal to the

cell interface is denoted
u=keu+kyv+kw _ (4.37)

When Q. = Q: and Qg = Q,,1 are used for the interface values, the scheme
is only first-order accurate in space due to the averaging across the cell; hence,
the MUSCL (Monotonic Upstream Scheme for Conservation Laws) approach is
applied to Roe’s first order scheme to obtain spatially higher order differencing.
The interface conserved variables arc constructed from the primitive variables

q = [p,u,v,w,p]” which are redefined as
(4diey = 4+ 3101~ )(B) + (14 R)(V0) (4.38)

(4R)iry = Givt = 311+ RNBG4) + (1= K) (D) (4:39)

where A and ¢ are the forward and backward differencing operators, respec-

tively, which are limited to maintain monotonicity by

Ag¢i = minmod(Aq,, 57 q;) (4.40)
V4i = minmod(vai, 8 A ¢i) (4.41)

where
minmod(x, y) = max[0, min(xsign(y), y sign(x))] sign(x) (4.42)
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p=1 (4.43)
B¢ =g —qi (4.44)
Ve = i1 —qi (4.45)

x was set to be §, which corresponds to third-order spatial discretization, for all

of the computations done for this study.

4.2 Time Integration

Since the steady state solution is sought, the governing equation is integrated
implicitly in time to take advantage of local time stepping. The time derivative
in the governing equation is approximated by first-order forward differencing

resulting in the following equation:

Qn+l_Qn oF nH oG n a(ﬁ-ﬁ,) "“_
AL *(%) &) T =0 (449

The flux terms in the above equation are non-linear; therefore, a linearized
scheme is applied. For example, using a Taylor series expansion, the flux term

in £ direction is approximated by

Ptz prog %—'t' At + O(AL)? (4.47)
Using the chain-rule, 4F can be rewritten as
aF  0F 0Q

for time independent grid system. Substituting this equation into Equation 4.47
yields-

50 AL+ O(AL)? (4.49)

Frtl = prog

Using first-order forward differencing for the temporal terms,

{)Q _ Qil+l _ Q" 3 AQ
S Edney Ve 08l = ==+ 0(AY) (4.50)
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and using

_or (4.51)
aQ
Equation 4.49 becomes
nt+l _ n aF 2 n A 2
ot F +%AQ+O(AL) =F"+AAQ+0(LY) (4.52)
Similarly, the fluxes G, /f, #, are linearized as

41 ~n aé A 2 o A 2
Gl = Gna S5 8Q+ 0B = 67+ BAQ+O(AY (4.53)

yn41 n aH 2 n 2
A = +%AQ+O(At) =H"+CAQ+0(AY) (4.54)
™t o= By oH, 2 =H"+C, AQ+0(A)? (4.55)

Substituting Equations 4.52 through 4.55 into Equation 4.46 and rearranging

terms yields the delta form of the Euler implicit formula which is given by

I
[JAt +6A+6,B+6(C-CH"AQ
__[oF 8¢ o -A,)]"_ n
| tEm T a (RHS) (4.56)
where
AQ=Q" - Q" (4.57)

Note that RHS is evaluated at the known time level. Applying the spatially-split

approximation-factorization method, @ at the n+1 step is calculated by

[Jgt +6 A" AQ" = ~(RHS)" (4.58)
[lIAf+6 B AQ™ —[JAt]AQ (4.59)
g +K(C P Q= (5] AQ™ (4.60)
Q"' = Q" + AQ (4.61)



where 6 is the difference operator and the subscript denotes the direction. Each
of the spatial factors is approximated with a diagonal inversion of the Jacobian

matrix. For example in the ¢ direction

1 n . I ~I\n -
[m*"stfﬂ AQ = [7—&+65(RAR raQ

[ + 6 (R(A* + A7)R-V)" A Q°

JAL
~ I —A+ 4 sHA-1p-1 .
% Rl +6 A +EAIRTTAQ (4.62)
where
At =4 *2"" (4.63)

and a first-order backward differencing approximation (5-) is used for the posi-
tive diagonal matrix (A+), and a first-order forward differencing approximation
(6*) is used for the negative (A-) diagonal matrix. Then the ¢-sweep of the time

integration becomes

L b At AT AQY) = —R

[ + 60 AT + 8 AR A Q") = —R™(RHS) (4.64)
Since the first three elements of the diagonal matrix are the same, only three
scalar tridiagonal LU decompositions are required for each sweep. The tridiag-

onal matrix equation is given hy
AT (M1, Qi (R AQT)i

I
g + AT (Mg, Q) = A (M3, QIR A Q)

“AT(Miy Q)T A Q)i = —R7YRHS) (4.65)

where, for example, A*(M,_,,Q;) denotes that the metric terms Mare evaluated
at cell interface location i— L, and the state variables are evaluated at cell-center
location i in A*. The direction cosines of the cell interface orientation contained
in the diagonalization matrix R-! are averaged values so that they represent
values at cell-centered locations. For the ¢ direction, the spectral radius scaling

of the viscous Jacobian matrix developed by Coakley?* is used. The ¢ spatial
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factor is approximated as

I I
[55; +&(C-CI"AQ~ Rl + 6 A + §FAT + 83 vIIRTTAQ (4.66)
where
_Jinn = 2fi+ S
62 f= Ay (4.67)
v = &"p_az (4.68)

and pm,: is the largest eigenvalue of C,, that is, pmer = maz((4/3)p, (v/Pr)n).

4.3 Turbulence Model

The effects of turbulence are accounted for through the concept of eddy
viscosity and eddy conductivity. The molecular viscosity u is replaced by an
effective viscosity u. and similarly the thermal conducivity k is replaced by an

effective thermal conductivity k.. The effective viscosity is calculated by
Be = p+ pir (4.69)

py 1s the eddy viscosity which is calculated using the algebraic turbulence model
of Baldwin and Lomax'®. By using Reynolds analogy, the effective thermal

viscosity is calculated by,

Cpjt Pr u,
k.=k+k =214 —2 4.70
‘ + Pr( +Pr,;4 ( )

where Pry is the “turbulent” Prandtl number and a value of 0.8 is used.
The turbulence model by Baldwin and L.omax is a zero-equation model where
the turbulent boundary layer is divided into two zones: inner region and outer

region. The eddy viscosity in the inner region is approximated by
pe = pl’|w,| (4.71)
where w, is the vorticity defined as
_Ou  Ov

- - T
W 9 oz (4.72)
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The outer region is approximated by
Bt = aﬁCchwakeFKleb (473)

where o and C,, are constants with values of 0.018 and 1.6, respectively, and

Fwake iS
Fuake = min [ymazcmaz y CwatelYmar (GA_V)'] (474)
A value of 0.25 is typically taken for Cy,ai. and Gp,. is defined as
!
Grar = mazr (:lwﬂ) (4.75)

where x ~ 0.4 is the von Karman constant. The mixing length, I, is determined

by

I = k(1 - e3F)y (4.76)

where standard definition of y* is

¥ oy Mule 4.77)

y.___

v

y

At is a parameter with a value of 26.0. AV denotes the difference between the
absolute values of the maximum and minimum values of vorticity within the

viscous region. Fg. is the Klebanoff intermittency factor, given by

-1

6
Fiies = [1 + 5.5 (Cmcb Y ) ] (4.78)
Ymaz

where Cirep = 0.3 and ym,. 1s the y location where Gnq: occurs.
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Chapter 5

Grid Generation

5.1 Elliptic Grid Generation

To solve the governing equations by means of a finite difference approxima-
tion, a set of grid points within the domain of interest, as well as the bound-
aries of the domain must first be specified. Furthermore, to solve the governing
equations given by FEquation 4.1 accurately, a grid system with the following

properties is desired 2’;

(1)A guaranteed one-to-one mapping, which ensures grid
lines of same families do not cross each other.

(2) Smooth variation of grid points.

(3) Clustering of grid lines near the surface

(

4) Orthogonality of the grid lines near the surface

To satisfy these properties, the grid system used for this study was generated
using an elliptic grid generation method developed by Steger and Sorenson 25.
In this method a system of partial differential equations is solved in a compu-

tational domain for the physical grid points as shown in Figure 5.1.
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The governing partial differential equations, in the physical domain, are given

by
a2 82
a7+ 33 = PQ) (5.1)
9 9?
S+ 3 = Q0 (52)

where P(n,¢) and Q(n,¢) are the forcing functions which ensure grid clustering
and orthogonality near the boundaries. Transforming the Equations 5.1 and 5.2

by exchanging the independent and dependent variables, gives

6y 6y 82

o -2 anoc + 7oz T -Jz( Q a( (5.3)
* ng ”aiéc ZT = ‘J’“’g_; + Qaa—z) (5.4)
where
= % + % (5.5)
h= gs: 3: + g—,,g-g (5.6)
T 62y 2t 3,2, (5.7)
=5 32 % 69

The Fquations 5.3 and 5.4 are two independent equations, which are solved in
the computational space (»,¢) for the physical grid coordinates (y, z). To obtain
a grid which is orthogonal and clustered at the surface (¢ = ¢1), Steger and

Sorenson proposed forcing functions having the form,,
P o= p(y,¢)eo=0) (5.9)
Q = q(y,¢)e” ¥ (5.10)

where a and b are specified constants. While the governing elliptic equations pro-
vide the smooth one-to-one distribution of points, the forcing functions, p(n,¢;)

and ¢(n,¢1), must be derived to satisfy the other two desirable properties, namely
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grid clustering and orthogonality at the inner boundaries. At the inner body,
¢ = (1, Equations 5.3 and 5.4 yield two independent equations for the forcing
functions, p(n,¢;) and ¢(n,¢1), given by

z 0 T
9 _Oup

pin,G) = | X9 (5.11)
J
4 (=(,
—%Z‘Rl + ?Rz
q(n.¢) = | —~ U (5.12)
J
4{=0
where
[ 8%y Fy | %y
~(aey — 2 42 Yy
R, = oot Gmd " o¢¢ (5.13)
J2
L 4 (=(s
( 0%z 0%z dz 7
oz - 2P — +y—
R, = 5 ~ e * 7o) (5.14)
J?
3 J(:(l

For the above equations, since the boundary values are fixed along ¢ = ¢, all
the n-derivatives, y,, z,, ypy, and z,, can be calculated using known boundary
point values. The first ¢-derivatives are derived so that grid orthogonality and
clustering can be maintained at the inner boundary. As shown in Figure 5.1,
the spacing between the inner boundary and the first constant ¢ line can be

described as

As l¢=¢,= [ (DY) + (Az)? (5.15)

]<=<.

In the limit as Ay and Az go to zero,

ds|(=<l::[\/(dy)z-r(d:)Q] (5.16)

(=G

Using the chain rule, the equation can be expanded as

A oy, ow \' fer.  e: \?
ds I(=C|_ [\/ia;dﬂ-{- ;,)—C-dC) + (3—nd1)+ Ezd(.) } (517)
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Since n is constant along ¢ = ¢, the above relationship can be reduced to

ds |¢=¢,

which can be rewritten as

= [\/(g—gd )2+ (g—zdc)f (5.18)
Jd¢=¢
(j—z)( le=ci= [\/(%?)2+ (g%)z: . (5.19)

To achieve grid orthogonality along the inner boundary, consider the definition

of a dot product,

[Vn- v(](:(, =[0 V|l V(| Coso](:(.

where 0 = /2 gives grid orthogonality. Expanding the equation gives

oo WG+ G VGE) +(F)
[ay(')y 3: 5: c:c._ [\/ 3 + 3 3y + 3. cosf (5.20)
(=
Exchanging the independent and dependent variables gives
dydy  0:0:1 3y)2 (0:)2 (3;,)2 (6:)2
[anac anoc]c:c,“ [\/(oc AV an) *\ag) (5.21)
(=C
Combining equations ( 5.19) and ( 5.21) produces the first ¢-derivatives,
Fds( Oy . )-
— | —==cosl sinf
Y
((_)!) = | A 9 9 (5.22)
S e
i n (=0
9 (:_s (—g—:cosﬂ + g—ysinﬂ)
(i)_) = |4 o n_ (5.23)
A/ ¢=c, \/(a;,)?Jr(a:)‘
- 61’ 67’} (=G

The cross derivatives y,

known derivatives y, and

and :z,¢ can be then calculated by differencing the

z, with respect to n. Note that all the derivatives
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mentioned above are calculated from known boundary point values, so they do
not change with iteration levels. Only the derivatives y, and z; change with

each iteration, which can be calculated by

=Ty le=cs 48y k=, —v le=¢,  3wc l¢=c¢,

wec le=qo= ——= 2(A<)2( 26 _ A‘( ¢ (5.24)
—7Z|=|+82l_—_,—2|=3 32|=1

z¢¢ Je=o= —=¢ 2(A<()2( =6 _ CA(C < (5.25)

With a given initial grid distribution and desired minimum spacing along the
inner boundary, Equations 5.3 and 5.4 can be solved using any relaxation scheme
for elliptic partial differential equations. Qne note of caution, the p and ¢ values
calculated by Equations 5.11 and 5.12 can be quite large, which in turn can
cause instabilities during the initial iterations. Hence, the values of p and q are

under-relaxed. The new values of p and q at cach iteration are calculated by
PP =p"" 4+ SIGN {min[wy [ p = p" "' |, pm maz(|p""1 1)), p—p"}  (5.26)
" =¢"" '+ SIGN {min [wq lg—¢"""1, qiirm maz(| ¢"~ ' |, 1)] ., q - q"'l} (5.27)

where superscript n—1 denotes the previous iteration values. The function SIGN
returns the magnitude of the first arguement and the sign of the second argue-
ment. pum 15 a small constant which is inputed. Furthermore, instabilities can
occur if the first-derivatives on the right-hand side of Equations 5.3 and 5.4 are
centrally differenced; therefore, the derivatives are approximated using forward
or backward differencing, depending on the sign of p and ¢. For example, if p
is positive, the y derivatives are approximated using forward differencing, and
if it is negative, backward differencing is used. The ¢ derivatives are calculated
similarly, depending on the sign of q. For the present study, Line Successive
Over-Relaxation was used to solve Equations 5.3 and 5.4, and grid sequencing
was used to minimize computational time. The value for w, and w, was .09, and
Piim and g, varied with the iteration level from 0.1 to 0.5. The exponential
constants « and & varied from 0.4 to .8, depending on the axial location where

the grid was generated.
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Computational Domain

Physical Domain

Figure 5.1: Elliptic grid generation
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5.2 Grid Spacing

For the Euler calculation, the grid spacing between the surface and the first
constant ¢-line was set to be of the order of 10-2 everywhere. For the viscous
calculations, to ensure accurate prediction of the skin friction the size of the first
grid cell away from the body is more critical than in the inviscid calculations.
The general rule of thumb, based on past calculations of this type, is that the
grid spacing should be such a size so that the corresponding y* values to the
center of the first grid cells are of order of one-tenth. y* is the standard height

parameter used in turbulent flow calculations, given by

Dy

+ 7
vt =— (5.28)

where Ay is the grid size, 7, is the wall shear stress, p is the density, and v is
the coeflicient of kinematic viscosity, Thus, the required height of the first grid
cell can be calculated by solving the above equation for y*. This was done by
approximating the wall density, the kinematic viscosity, and the shear stress
using the reference temperature method. In this method, the local turbulent
skin friction coeflicient is given by

0.0592

Cj = ———(lf(”l_)o'z (529)
where
't/
Re!, =L tl‘f" (5.30)

¢ and ' are, the density and viscosity respectively evaluated at the reference

tempcrature, 77, given by

) T
T' = Too[1 4+ 0.032M] +0.58(= — 1] (5.31)

oo
where M, is the edge Mach number and 7, is the wall temperature. Viscosity

is assumed to vary exponentially; hence, u' is calculated by
l‘, T’
B oo (=— W 5.32
p (Tou) (5.32)
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and w is set to be 0.75 for the present work. The wall shear stress is calculated

by
|
Tw = c;(§p'voo) (5.33)

For the present study, the edge Mach number was set to be the freestream
Mach number instead of local edge Mach number for convenience and a value
of y* = 0.2 was used. The grid spacing calculated using Equation 5.28 was
then multiplied by a parameter which varied from the leading edge point to the
center-line, having a maximum value at the leading edge point and a minimum
value at the center-line to account for the fixed Mach number. Since this is
only an approximation, the actual values of y* must be checked to ensure the
accuracy of the results. For all cases, the actual values of y* based on results
from the calculation varied from 0.1 to 0.5; thus, satisfying the condition stated
previously.

The final three-dimensional grid was obtained by connecting the two-dimensional
grid generated for each axial-location, which results in a C-H topology. The grid
for the region in front of the nose was constructed by duplicating the grid at
the nose and placing it in front of the body. The grid topology for the Mach
6 Euler calculation is shown in Figure 5.2. Figure 5.3 shows the details of the
grid ncar the sharp leading edge for the inviscid calculation and the rounded
leading edge for the viscous calculations. Superimposed on the sharp leading

edge 1s the shape of the rounded leading edge.

5.3 Grid Adaptation

To achieve better shock resolution, an adapted grid was used for the inviscid
calculation of a sharp leading edge waverider at on-design conditions. The
adapted grid was generated using a method developed by Hsu and Lytle2s The
idea behind the scheme, known as the arc equidistribution scheme, is to have
the grid size inversely proportional to a weight function so that the product
of the weight function and the grid size are approximately equal at each grid

cell. When the gradient of the flow variables is used to construct the weight
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function, the grid will be dense at regions of high gradient thus reducing the

discretization error in the region.

A Sjw; = AG; (5.34)
where
85 = \f(zjs1— 2))? + (g1 — 45)? (5.35)
and
wj =1+ B |uj4r — uj) (5.36)

u represents any of the flow variable, as well as, any corhbinations. B 1s a constant
which controls the sensitivity of adaptation to the ﬂdw gradient. Larger value
of g will cause the grid to be more dense in the region for given flow gradient.

C;j is taken to be
C; = AS? (5.37)

where the superscript “o” denotes the arc lengths of the original non-adaptive
grid. This allows for the new grid to have a memory of the spacing of the
original grid; hence the new grid will be similar to the original grid. Coefficient
A is a constant which is determined so that the total arc length of the new grid

is the same as the old arc, i.e.,
. C:
Ej ASj = Ej ASJ- =2 Ej —JL (5.38)

From the above equation

AS?
A= ZilS (5.39)
I
After obtaining a flowfield solution from the non-adaptive grid, the grid was
clustered in the regions of high pressure gradient in the ¢ direction; hence,

Equation 5.36 becomes

we = 14 Blpey1 — pel (5.40)

with § = 50. For each constant ¢-line,two sets of cubic-splines with the arc length

as the independent variable and z and y as the dependent variables are created.
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The new arc length is calculated from Equation 5.34, and to ensure a smooth

grid, the new arc lengths are averaged using a four point averaging,
1
Sjr = Z(SH.)_); + i1k +Sje-1+ Sjk41) (5.41)

The smoothing process, which is in fact a Point Jacobian Method for a Laplace
equation, is applied for two or three iterations. Finally, using the new arc length
and the cubic-splines, the grid points are redistributed along each constant ¢-
line. Figure 5.4 shows the original non-adaptive grid and the adaptive grid at

the exit flow plane.
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Figure 5.2:. Three-dimensional grid for Mach 6 waverider.
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Figure 5.3: Details of the leading edge for the inviscid grid and the viscous grid.
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Chapter 6

Results

6.1 Configuration

The waverider shape used in this study was generated in a flowfield pro-
duced by a cone with a semi-apex angle of 7.09 degrees. The design Mach
number was Mach 6, and the design static conditions correspond to freestream
conditions at an altitude of 30 km. Note that this design condition corresponds
to typical hypersonic cruise conditions. The bow shock angle produced by the
cone-body at this Mach number is 12 degrees. The leading edge coordinates
for this waverider are given in Appendix A. The length of the vehicle was set
to be 60 meters, and the surface temperature was set to be a constant value
of 1,100 K. The boundary layer was assumed to be fully turbulent everywhere
on the vehicle, and the shape was optimized for maximum L/D. This config-
uration corresponds 1o the so-called “best optimum” waverider for maximum
L/D at the given design condition. The top, front, and perspective view of this
waverider are shown in Figure 6.2.

To give realistic meaning to the viscous calculation and to study the effects
of leading-edge roundness, the original sharp leading edge was rounded. For
the present study the radius of the leading edge was sel to be r= 1 cm, which
corresponds to the minimum radius necessary for active cooling, as explained

by Vanmol'?. The leading edge was rounded for each cross-section by moving
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inward from the leading edge until the radius of the inscribed circle of a triangle
matched the desired leading edge radius. The triangle was constructed at the
leading edge using three grid points and everywhere else by extending the line

segments defined by the two surface grid points as shown in Figure 6.1.

3

Original Shamp Cross-section

\

New Rodnded Cross-section

—

\
Prescribed Radius

Figure 6.1: Rounding the leading edge.

6.2 Solution Methodology

All computations were run on an waverider, which was optimized for a
Mach 6 cruise flight at an altitude of 30 km, as previously stated. The values of
freestream static pressure and static temperature were taken to be the design
point values of 1185.5 N/m? and 231.3 K, respectively. All the cases were run
at zero degrees angle of attack, i.e., the upper surface was aligned with the
freestream flow. The flow was assumed to be calorically perfect and a specific
heat ratio value of 1.4 was used. Inviscid calculations were done for both the

rounded leading edge waverider and the original sharp leading edge waverider
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at the on-design freestream Mach number of 6. Viscous calculations were done
for the rounded leading edge waverider at off-design Mach numbers of 4 and
8, as well as the on-design Mach number. The flow was assumed to be fully
turbulent, and the wall temperature was set at the design wall temperature
value of 1100 K for Mach 6 and 8 calculations and 725 K for Mach4 calculation,
everywhere on the vehicle.

Second-order extrapolation was used for the exit flow plane boundary condi-
tion. A global iteration was performed for all of the calculations until the drag
coefficient varied by less than one-tenth of a percent over 100 iterations.

A grid dimension of 21x91x51, which corresponds to the dimension of the
grid in the ¢, », and ¢ directions, respectively, was used for the Mach 6 and
8 calculations. The values of the dimension correspond to the number of grid
points in the streamwise direction, circumferential direction, and the radial
direction, respectively. For the Mach 4 calculation a 46x91x51 grid was used.
When the computation was originally done for Mach 4 using 26x91x51 grid, the
code produced results with compression waves emanating from the lower surface,
which were not present in the higher Mach number calculations. By increasing
the number of points in the streamwise direction to 46, the non-physical waves

caused by minor surface irregularities were eliminated.

6.3 Euler Calculation

The pressure data from MAXWARP can be taken as an “exact solution” to
the invisaid flow field, within the numerical crrors associated with the fourth-
order Runge-Kutta method and cubic-spline interpolation of the cone-flow.
Therefore, the inviscid results from MAXWARP, i.e., the Taylor-Maccoll so-
lution can be used for validation of the Euler results. Figure 6.3 is the pressure
contour plot at the exit flow plane. The left portion of the diagram represents
the “exact solution,” where the pressure was calculated for each grid point using
the cone-flow solution from MAXWARP and a cubic-spline interpolation. The
right portion of the diagram is constructed from the Euler solution obtained

from the computation. Note the excellent agreement in the shock location. The
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slight difference in the locations of the pressure contour lines within the shock
is primarily due to the finite shock thickness calculated by the Euler solution.
Also, the minor differences may be caused by the extrapolation of the cell av-
eraged values which are calculated by the finite volume algorithm. The surface
pressure distribution at the exit flow plane is shown in Figure 6.4. Except near
the center-line, both solutions are in good agreement. Once again, differences
near the center-line are due to the finite shock thickness calculated by the Euler
solution. Table 6.3 lists the force coefficients, C, and Cp, and L/D calculated by
MAXWARP and CFL3D. The values predicted from the two codes are in good
agreement. For both codes the base drag was calculated using the freestream

static pressure value.

MAXWARP CFL3D % Difference

CL 3.172E-2  3.168E-2 126
Cp 2.257TE-3  2.315E-3 2.57
L/D 14.06 13.68 2.70

Table 6.1: Inviscid force coefficients and L/D for Mach 6 calculation.

6.4 Navier-Stokes Calculations

One of the primary objectives of this study is the validation of the viscous
forces predicted by the MAXWARP design code. Since the leading edges of
the waverider for the Navier-Stokes calculations were rounded, the bow shock
will no longer be attached to the leading edge. Therefore, the pressure and
viscous force in the region near the leading edge will be different from the orig-
inal configuration and a direct comparison between the two results will not be
exact; however, since the leading edge radius is significantly smaller than the
overall size of the vehicle, the computational results should compare well with
the MAXWARP prediction.Table 6.2 shows the direct comparison of the force
coefficients and L/D predicted by the two codes, and Table 6.3 shows the con-

tributions of the inviscid and viscous forces to the total force predicted by the
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two codes. The performance predicted by the two codes compares very well.
The CFL3D calculates lift and drag cocflicients that are 1.86% and 6.87%, re-
spectively, higher then the MAXWARP code predictions. The larger increase in
drag coefficient is due to the effects of the leading edge roundness on the inviscid
flowfield, which can be seen by comparing the inviscid drag coefficients, i.e., the
wave drag coefficient in Table 6.3. It is noted that the viscous contribution to

the total drag is practically the same for both codes.

" MAXWARP CFL3D % Difference

C.  3.168E-2  3.228E-2 1.86
Cp  4.089E-3  4.391E-3 6.87
L/D 7.74 7.35 5.31

Table 6.2: Force coefficients and L/D for Mach 6 calculation.

Code Inviscid  Viscous Total
MAXWARP ¢, 3.172E-2 -.004E-2 3.168E-2
Cp 2.257E-3 1.832E-3 4.089E-3
CFL3D Cr 3.237E-2 -.009E-2 3.228E-2
Cp 2.549E-3 1.842E-3 4.391E-3

Table 6.3: The inviscid, viscous, and the total force coefficients for Mach 6 calculation.

Figure 6.5 show the surface pressure variation in the streamwise direction
along the centerline on the top and bottom surface, and the leading edge. Along
the leading edge, the pressure monotonically decreases from a maximum value
at the nose region to a minimum value at the trailing edge. This variation is
analogous to the variation of the sweep angle. On the other hand, the surface
pressure monotonically increases along the centerline on the bottom surface,
which is consistent with the pressure variation along a streamline in a conical
flow. Note that along the centerline on the top surface, the pressure remains

essentially constant. Figures 6.6 and 6.7 show the pressure contours at a cross-
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section located at 60% of the chord and at the exit flow plane, respectively. Both
figures show that, although there is some increase in pressure in the flowfield
above the vehicle, the increase is minor and the flow can be said to be essen-
tially contained. The shock is located near where the Taylor-Maccoll equation
predicts, and the flow within the shock is still very uniform and varies like the
conical-flowfield; however, the values are no longer the same for given loca-
tions. This is caused by the displacement of the flow away from the body by
the boundary layer, which causes the pressure to be at a higher value than the
coneflow value at a given radial direction away from the surface.

Figures 6.8 and 6.9 show the surface pressure distribution at a cross-section
located at 60% of the chord and at the exit flow plane. Both figures show
marked increase in pressure at the leading edge compared to the design code
solution due to the stagnation flow. Immediately downstream of the leading
cdge, the flow rapidly expands on both side of the surface and then recompresses
to pressures slightly higher than the conical values. The difference gradually
decreases towards the center-line and returns to the values of the conical-flow.

Figures 6.10 and 6.11 show the pressure contours at a cross-section located
at 60% of the chord and at the exit flow plane, respectively, for the Mach 8
off-design calculation. As expected the shock is pressed closer to the body near
the center-line and is about two-thirds of the height of the on-design shock
location; also, the bow-shock has less curvature in the cross-flow plane, and
the pressure varies almost two-dimensionally. Near the leading edge, the flow
variation is qualitatively similar to the on-design flowfield, even though the bow
shock shape is no longer circular.

Figures 6.12 and 6.13 show the surface pressure distribution at a cross-
section located at 60% of the chord and at the exit flow plane, respectively.
Due to the higher jump in pressure across the bow shock, the surface pressurc
ratio is about 25 % higher than the on-design value. But, the surface pressure
still varies similarly to the on-design condition, decreasing towards the leading
edge until it is affected by the stagnation flow.

Figures 6.14 and 6.15 show the surface pressure distribution at a cross-section
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located at 60% of the chord and at the exit flow plane, respectively, for the Mach
4 off-design calculation. As expected, compared to the on-design Mach number
calculation, the shock detachment is pronounced. The overall uniformity of the
flowfield within the shock is better than the higher Mach number cases due to
a weaker shock, and the variation of the flowfield no longer matches the conical
flowfield. Also, compared to the higher Mach number flows, the leading edge
has a greater influence on the neighboring flowfield.

Figures 6.16 and 6.17 show the surface pressure distribution at a cross-section
located at 60% of the chord and at the exit flow plane. In both figures the
variation of surface pressure in the circumferential direction no longer behaves
like the higher Mach number cases. On the lower surface the pressure is almost
constant across the span except near the leading edge where it increases to the
stagnation value.

The static pressure contour plots for different Mach numbers indicate that
the maximum percent difference in the pressure within the region where the
combustor entrance would be most likely located is approximately 10 %, thus
providing initial indications of flow uniformity.

Figures 6.18 -6.23 show the mass flux distributions at the 60% chord plane
and the exit plane for the three Mach number calculations. Mass flux distribu-
tion is a good measure of inlet performance, since loss in mass flux results in
a reduction in thrust, and large gradients in mass flux tend to require complex
fueling schedules. Figures 6.18 and 6.19 show the mass ﬂux distributions, at the
60% chord plane and the exit plane, respectively for the design Mach number of
6. As a comparison the mass flux distribution for the inviscid flow is shown on
the left hand side of the figures. At each cross-section the effect of the boundary
layer is to increase the region of higher mass flux; however, the boundary layer
also results in a region of large gradient. Comparing the two cross-section, al-
though there is a slight decrease in the magnitude, the distribution of the mass
flux at the 60% chord is more uniform than the distribution at the exit plane.

' Figures 6.20-6.21 show the distributions for Mach 8 case. The plots show that

compared to Mach 6 results, the gradient of the mass flux is greater, but the
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distribution is similar along radial direction away from the body to the shock.
Note that the boundary thickness based on mass flux nondimensionalized with
respect to freestream conditions is thinner than the Mach 6 boundary layer.

Figures 6.22-6.23 show the mass flux distributions for the Mach 4 case. Ne-
glecting the flow within the boundary layer, the region of uniform mass flux has
greatly increased at this lower Mach number. This result tends to indicate that
the flow about the body has become more two-dimensional, as the freestream
Mach number was decreased.

Another good measure of forebody design is the amount of side wash angle
at the entrance of the combustor, The increase in side wash angle contributes
to reduction in thrust due to loss of momentum in the flight direction and shock
generation on the side walls of the combustor. Figures 6.24- 6.29 show the side
wash angle distributions at the 60% chord plane and the exit plane for the three
cases. Once again, for comparison purposes, the side wash angle distribution
for the Mach 6 inviscid flow is shown on the left hand side of the figures.

Figures 6.24 and 6.25 show the side wash angle distributions for the Mach 6
case. Since the generating flow is conical, the side wash angle is equal to the
angle between the line of symmetry and the ray emanating from the vertex of
the generating cone, as seen in the leflt hand side of the figures. At each cross-
section, the side wash angle within the region of the inviscid shock layer matches
closely to the inviscid solution; thus, if a modular scramjet design were to be
used, the effects of side wash can be reduced. For example, if six modules with
a total width of a third of the span of the vehicle were used, the flow angularity
experienced by each module would be roughly less than +1.5 degrees. Note that
at both cross sections the side wash angle is larger than the corresponding ray
angle, which may be the influence of the rounded leading edge.

Figures 6.26 and 6.27 show the side wash angle distributions for the Mach 8
case. The side wash angle distributions are similar to the Mach 6 distributicn
in that the side wash angle in the inviscid shock layer increases with the ray
angle and the angularity within the boundary layer is greater than the angle of

the ray; however, the similarity degrades near the leading edge. Note that for

49



this Mach number the magnitude of the side wash angle remains slightly less
“than the corresponding ray angle.

Figures 6.28 and 6.29 show the side wash angle distributions for the Mach
4 case. The side wash anglé distributions for the Mach 4 results are in stark
contrast to previous flow distribution plots , where the flow parameters exhibited
little variation. In fact, the side wash angle gradient in the span wise direction
for the Mach 4 case is greater than the gradients for the higher Mach number
cases. The higher gradient is the result of the larger shock separation from the
leading edge.

The lift and drag coeflicients and the L/D values for the on-design as well as
the two off-design cases are tabulated in Table 6.4. Figure 6.30 and 6.31 show
the break down of the lift and drag coeflicients. The dominant lift, as expected,
is generated by the inviscid pressure on the lower surface for all the ranges of
Mach number. The effects of leakage do increase with Mach number, but the
overall effects on the lift are minimal. For the drag coefficient, skin friction
contributes approximately half the total drag, with the contribution increasing
at off-design conditions. As expected the drag coefficient on the upper surface,
which can be taken essentially as the skin friction coefficient, decreases with
increasing Mach number.

Figure 6.32 compares the L/D values of the Mach 6 waverider used in the
present investigation with the viscous optimized waveriders at different Mach
numbers. The L/D values for the viscous optimized waveriders were calcu-
lated by MAXWARP using the same conditions as the CFL3D calculations. As
expected, the difference in performance do increases at off-design conditions;
however, overall, the off-design performance of the Mach 6 waverider compares

well with the performance of waveriders optimized for the off-design conditions.
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o L/D
3 17.66

CL
Mach 4 4.354E-2 5.679E-

Mach 6 3.228E-2 4.391E-3 7.35

Mach 8 2.520E-2 3.726E-3 6.76

Table 6.4: Force coefficients and L/D at on and off-design conditions.

Figure 6.2: Mach 6 viscous optimized waverider.
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Figure 6.3: Comparison of MAXWARP results and CFL3D Euler results for Mach 6 calcula-
tion: Pressure contour at exit flow plane,
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Figure 6.4: Comparison of MAXWARP results and CFL3D Euler results for Mach 6 calcula-
tion: Surface pressure distribution at exit flow plane and the outline of the cross-section.
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Figure 6.5: Surface pressure variation in the streamwise direction from CFL3D results for
Mach 6 calculation
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Figure 6.6: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:
Pressure contour at cross-section located at 60 % of the chord.
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Figure 6.7: Comparison of MAXWARP Results and CFL3D Results for Mach 6 calculation:
Pressure contour at exit flow plane.
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Figure 6.8: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:
Surface pressure distribution at cross-section located at 60 % of the chord and the outline of
the cross-section.
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Figure 6.9: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:

Surface pressure distribution at the exit flow plane and the outline of the cross-section.
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Figure 6.10: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Pressure contour at cross-section located at 60 % of the chord.
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Figure 6.11: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Pressure contour at exit flow piane.
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Figure 6.12: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Surface pressure distribution at cross-section located at 60 % of the chord and
the outline of the cross-section.
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Figure 6.13: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach
8 calculation: Surface pressure distribution at the exit flow plane and the outline of the
cross-section.
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Figure 6.14: Comparison of MAXWARP for Mach 6 results and CFL3D results for Mach 4
calculation: Pressure contour at cross-section located at 60 % of the chord.
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Figure 6.15: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4

calculation: Pressure contour at exit flow plane.
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Figure 6.16: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Surface pressure distribution at cross-section located at 60 % of the chord and
the outline of the cross-section.
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Figure 6.17: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach

4 calculation: Surface pressure distribution at the exit flow plane and the outline of the
cross-section.
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Figure 6.18: Comparison of MAXWARP results and CFL3D results for Mach 6 calcula-
tion: Mass flux contour at cross-section located at 60 % of the chord and the outline of the
cross-section.
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Figure 6.19: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:
Mass flux contour at the exit flow plane and the outline of the cross-section.

68



Mass Flux
bVip V)

2.00
1.4
1.89
1.83
178
1.72
167
181
1.58
1.50
1.44
1.9
19
128
122
147
1.14
1.08
1.00

“-NUAENAINDOIPTOOMMOT

Figure 6.20: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Mass flux contour at cross-section located at 60 % of the chord and the outline
of the cross-section.
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Figure 6.21: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Mass flux contour at the exit flow plane and the outline of the cross-section.
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Figure 6.22: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Mass flux contour at cross-section located at 60 % of the chord and the outline
of the cross-section.
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Figure 6.23: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Mass flux contour at the exit flow plane and the outline of the cross-section.
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Figure 6.24: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:
Side wash angle contour at cross-section located at 60 % of the chord and the outline of the
cross-section.
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Figure 6.25: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:

Side wash angle contour at the exit flow plane and the outline of the cross-section.
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Figure 6.26: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Side wash angle contour at cross-section located at 60 % of the chord and the
outline of the cross-section.
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Figure 6.27: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Side wash angle contour at the exit flow plane and the outline of the cross-section.
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Figure 6.28: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Side wash angle contour at cross-section located at 60 % of the chord and the
outline of the cross-section.
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Figure 6.29: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: side wash angle at the exit flow plane and the outline of the cross-section.
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Figure 6.30: Inviscid and viscous force contribution to the total lift coefficient.
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Figure 6.31: Inviscid and viscous force contribution to the total drag coefficient.
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Figure 6.32: Comparison between the L/D values calculated by CFL3D for the Mach 6 viscous

optimized waverider and the L/D values predicted by MAXWARP for the Mach 4, 6, and 8
viscous optimized waveriders.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

The present work is the first Navier-Stokes computation of the viscous op-
timized waverider at off-design Mach numbers. Navier-Stokes calculations were
made at Mach numbers 4, 6, and 8 for a Mach 6 viscous optimized waverider.
Good comparisons were found between the inviscid forces from MAXWARP
and the Euler solution from CFL3D; thus, validating the inviscid solver of
CFL3D. Good comparison also resulted between MAXWARP and the Navier-
Stokes calculations at the on-design condition. Especially, excellent agreement
was obtained between the two codes for the contribution of viscous effects on
drag. From these results, it can be stated that MAXWARP can be used with
confidence for preliminary design of hypersonic forebodies. From the Mach 6
calculation it was observed that the rounding of the leading edge to 0.01 m
radius had a negligible effect on the containment and the structure of the in-
viscid flowfield on the lower surface as well as the overall performance of the
vehicle; however, some effects were noted in the side wash angle distribution
in the boundary layer. Computational results for the off-design Mach numbers
demonstrate that the performance of the optimized waverider does not degen-

erate rapidly with off-design conditions as initially feared, and in actuality the
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performance at off-design conditions compares well with the performance of wa-
veriders optimized for those conditions. The uniformity of key flow parameters
for inlet performance was maintained throughout the range of Mach numbers
which demonstrates that the configuration will make an excellent forebody de-

sign for a hypersonic cruise vehicle.

7.2 Recommendations

Because the primary objective of this numerical experiment was to obtain
force data for the Mach 6 waverider for on and off design conditions, no dectail
analysis of the flow within the boundary layer was done. The thickness of the
boundary layer at the end of the forebody can have significant effect on the
combustor performance. The boundary layer thickness based on velocity profile
for the Mach-6 case was was approximately 40.0 cm at the exit flow plane, which
is consistent with the presently available correlation for the turbulent boundary
layer thickness. If this value is indeed correct, then some method to reduce the
boundary layer thickness will be necessary. Thus it is important for the future
development of the engine/airframe integrated design to do a detailed analysis
of the boundary layer at high Reynolds number.

Calculations should be done for different waverider shapes to see whether
some sacrifice in performance at the on-design condition can improve the off-
design performance. '

Finally, as the design matures for the air-breathing hypersonic vehicle, cal-
culations should be performed at multiple points along the flight path for the

entire vehicle.
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Appendix A

Leading Edge Coordinates
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Y

Z

0.00000E+00
3.72455E-01

7.44910E-01

1.11737E+4-00
1.48982E+-00
1.86228E+-00
2.23473E+00
2.60719E+00
2.97964E+00
3.35210E+00
3.72455E+00
4.09701E+00
4.46946E+00
4.84192E+00
5.21437E+00
5.58683E-+00
5.95928E+00
6.33174E+00
6.70419E+00
7.07665E+00
7.44910E+00
7.82156E+00
8.19401E+00
8.56647E-+00
8.93892E+00
9.31138E+00

1.98334E+01
1.98769E4-01
1.99210E+01
1.99659E+-01
2.00119E+01
2.00590E+01
2.01077E4-01
2.01580E+01
2.02102E+01
2.02645E+01
2.03212E+-01
2.03804E+-01
2.04424E+01
2.05074E+01
2.05756E+-01
2.06472E+401
2.07225E4-01
2.08016E+4-01
2.08849E+-01
2.09725E+-01
2.10648E+4-01
2.11620E4-01
2.12645E+01
2.13723E+01
2.14860E+401
2.16056E+-01

Table A.1: Leading edge coordinates for Mach 6 viscous optimized waverider.
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Y

9.68384E+00 2.17315E+01

1.00563E+01
1.04287E+01
1.08012E+01
1.11737E+01
1.15461E+01
1.19186E+01
1.22910E+01
1.26635E+01
1.30359E+01
1.34084E+01
1.37808E+01
1.41533E+01
1.45258E+01
1.48982E+01
1.52707E+01
1.56431E+01
1.60156E+01
1.63880E+01
1.67605E+01
1.71329E+01
1.75054E+01
1.78779E+01
1.82503E-+01
1.86228E+01

2.18640E+01
2.20033E+01

' 2.91498E+01
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2.23036E+01
2.24650E+01
2.26344E+01
2.28119E+01
2.29979E+01
2.31920E+01
2.33939E+01
2.36030E+01
2.38187E+01
2.40406E+01
2.42681E+01
2.45008E+01
2.47381E+01
2.49795E+01
2.52245E+01
2.54725E+01
2.57232E+01
2.59759E+01
2.62301E+01
2.64853E+01
2.67411E+01

Table A.2: Leading edge coordinates for Mach 6 viscous optimized waverider. (continued)
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